COMMUNICATION

Disproportionation of triorganotin species, R₃SnX

Steven J Blunden,* Paul Harston,† Robin Hill* and James L Wardell†‡

- * International Tin Research Institute, Kingston Lane, Uxbridge, Middlesex UB83PJ, UK and
- † Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE, UK

Received 22 January 1990

Accepted 15 April 1990

Triorganotin compounds, R_3SnX , have found extensive use as a biological agents in such areas as agrochemicals, marine antifoulants and timber preservatives. In contrast, $di(R_2SnX_2)$ and tetraorganotin derivatives (R_4Sn) possess less biological activity than do their triorganotin counterparts. It has been shown that disproportionation of R_3SnX species (i.e. to produce R_2SnX_2 and R_4Sn) can occur especially when X is a chelating or bridging group such as oxide, carboxylate, hydroxy ketone or hydroxyquinoline. This process has implications for the industrial applications and analysis of R_3SnX compounds.

Keywords: Disproportionation, triorganotin compounds

INTRODUCTION

Triorganotin compounds, R₃SnX, have had varied application, particularly as biological agents in such areas as wood preservation, marine antifouling and as agrochemicals. Di- and tetraorganotin species have less bioactivity than do their triorganotin counterparts. It is thus of some importance for applicational purposes that the triorganotin moiety remains intact for as long as possible *in situ*. One such process that affords lower alkylated derivatives is degradation, i.e. cleavage of Sn-C bonds resulting in loss of organic moieties, viz.

$$R_3SnX \rightarrow R_2SnX_2 \rightarrow RSnX_3 \rightarrow SnX_4$$

Another process leading to less bioactive species is disproportionation, i.e. the formation of di- and

tetra-organotin products from triorganotin compounds:

$$2R_2SnX \rightarrow R_2SnX_2 + R_4Sn$$

Although there have been numerous observations of degradative processes,³ the phenomenon of disproportionation is less well understood or documented. In this preliminary paper, we suggest evidence that disproportionation may be more widespread than hitherto realised.

EXPERIMENTAL

Compounds

The tributyltin carboxylates, $Bu_3SnOCOR$, where $R = C_{11}H_{23}$, C_6H_5 , $C_6H_4NO_2-4$, and the tributyltin derivatives of 5,7-dibromo-8-hydroxyquinoline and 5-chloro-7-bromo-8-hydroxyquinoline were prepared by azeotropic dehydration reactions between equimolar quantities of bis-(tributylin) oxide and the appropriate carboxylic acid or substituted 8-hydroxyquinoline in refluxing toluene.

NMR spectroscopy

¹¹⁹Sn NMR spectra were recorded on JEOL FX60Q and FX90Q spectrometers at 22.24 MHz and 33.35 MHz respectively, under Nuclear Overhauser suppressed conditions. Field frequency lock for the FX60Q and FX90Q instruments was to external D_2O . Chemical shifts (δ^{119} Sn) are relative to Me₄Sn and are accurate to ± 0.2 ppm.

Table 1 Disproportionation of triorganotin compounds

Triorganotin compound	Disproportionation conditions	Products	Extent of reaction (%)	Method of study identification	References
Bu ₃ SnO ₂ CC ₁₁ H ₂₃ [δ^{119} Sn = 86.7] ^a	Neat, 60°C, 14 days	Bu ₄ Sn[δ^{119} Sn = -12.5] ^a Bu ₂ Sn(O ₂ CC ₁₁ H ₂₃) ₂ [δ^{119} Sn = -137.9] ^b	20	¹¹⁹ Sn NMR	This study
Bu ₃ SnO ₂ CPh $[\delta^{119}$ Sn = 110.3] ^b	Neat, 220°C, 30 min	Bu ₄ Sn $[\delta^{119}Sn = -10.7]^b$ Bu ₂ Sn(O ₂ CPh) ₂ $[\delta^{119}Sn = -137.9]^b$	14	¹¹⁹ Sn NMR	This study
Bu ₃ SnO ₂ CC ₆ H ₄ NO ₂ -p $[\delta^{119}$ Sn = 127.1]	Neat, 220°C, 30 min	Bu ₄ Sn [δ^{119} Sn = -11.3] Bu ₂ Sn(O ₂ CC ₆ H ₄ NO ₂ -4) ₂ [δ^{119} Sn = -148.0] ^a	80	¹¹⁹ Sn NMR	This study
Br (Bu ₃ SnOR)	During synthesis via azeotropic distillation in refluxing PhMe	Bu_4Sn $[\delta^{119}Sn = -11.7]^c$ $Bu_2Sn(OR)_2$	>5	¹¹⁹ Sn NMR	This study
$[\delta^{119}Sn = 60.3]^{c}$		$[\delta^{119}Sn = -251.1]^c$			
Bu ₃ Sn0 Br N	During synthesis via azeotropic distillation in refluxing PhMe	Bu ₄ Sn $[\delta^{119}$ Sn = -11.6] ^c Bu ₂ Sn(OR) ₂ $[\delta^{119}$ Sn = -250.2] ^c	ca 5	¹¹⁹ Sn NMR	This study
(Bu ₃ SnOR ¹)					
$[\delta^{119}Sn = 61.0]^c$					
(Ph₃Sn)₂O	(i) 290°C (ii) 280°C (iii) 140°C, <i>in vacuo</i> , 8 h (iv) refluxing PhMe	Ph₄Sn: Ph₂SnO	Quantitative	Thermal analysis	This study
$(Me_3Sn)_2O$	190°C	Me₄Sn Me₂SnO	Quantiative	Chemical analysis	5
Bu ₂ (H ₂ C=CH)SnOH ^d	RT	Bu2SnO Bu2(H2C=CH)2Sn	Quantitative	Chemical analysis	6

^a Measured in PhMe. ^b Measured in CDCl₃. ^c Neat. ^d Probably via the oxide.

Thermal Analysis

This was carried out using a Stanton Redcroft, STA-780 simultaneous thermal analyser.

RESULTS AND DISCUSSION

There are a limited number of reports of confirmed disproportionations of R₃SnX derivatives scattered throughout the literature;⁴⁻⁸ in other cases, detection of one of the two products [R₄Sn or R₂SnX₂] has led to suggestsions that this process had occurred.⁹⁻¹¹ In addition, it has recently been demonstrated that on impregnation into *Pinus sylvestris* sapwood, (Bu₃Sn)₂O is rapidly

converted¹² into tributyltin carboxylates (Bu₃SnOCO.R), and that these subsequently undergo disproportionation¹³ in situ at 60°C to form Bu₄Sn and Bu₂Sn(OCO.R)₂. The presence of these compounds was positively confirmed by ¹¹⁹Sn NMR spectroscopy.

Furthermore, Bu₄Sn, so produced, is not persistent in timber and is lost by volatilization.

Table 1 shows additional examples from our work and from the literature of verified disproportionation reactions, i.e. where both di-(R₂SnX₂) and tetra-organotin species (R₄Sn) have been identified. It can be seen from this table that, in some cases, this process occurs under relatively mild conditions.

Disproportionations have also been suspected for reactions in which only one of the potential products has been detected. An example is the formation of $R_2Sn(Of)_2$, from the azeotropic dehydration reaction in refluxing toluene between R_3SnOH and HOf (I; HOf = 3-hydroxyflavone).¹⁴

The ease of disproportionation is in the sequence R = Me > Bu > cyclohexyl > neophyl > Ph. The formation of Me_4Sn (as detected by 1H NMR spectroscopy) from reactions between Me_3SnSPh and $(NC)_2C=C(CN)_2$ in CH_2Cl_2 solution at room temperature can also be interpreted as occurring via such a process. 15 A more elaborate disproportionation is the reported complete scrambling of $Me_3(CH_2=CHCH_2)Sn$ in the presence of BF_3 . OEt_2 at low temperatures to $\sum_{n=0}^4 = Me_n(CH_2CH=CH_2)_{4-n}Sn$, as detected by ^{13}C and ^{119}Sn NMR spectroscopy. 16

It is of interest that many, but not all, of the disproportionations of R₃SnX are achieved when X is a chelating and/or a bridging group, e.g. —O—, —O₂CR or alkoxy ketone.

The facile disproportionation of triorganotin derivatives of chelating ligands may also be of some consequence in speciation studies of organotin species, i.e. in aqueous media. Frequently, chelating ligands, such as tropolone (II), are used to aid the extractions of the organotins from aqueous to organic media. ¹⁷ Any disproportionation which may arise will at the very least lead to erroneous conclusions.

That disproportionations do occur cannot be disputed, nor can the adverse effects of such reactions. Whether enough heed has been paid to this process is not certain. The range and scope of disproportionations certainly needs investigation and we are now carrying out a study on the kinetic and thermodynamic effects that influence them.

CONCLUSIONS

It has been shown that disproportionations of triorganotin derivatives, R₃SnX, can occur when X is a chelating or bridging group such as oxide,

carboxylate, hydroxy ketone or hydroxyquinoline. As a consequence, the range and scope of such a process needs further investigation since the implications for the commercial applications, and indeed analysis of organotin compounds, are wide-ranging.

Acknowledgments The International Tin Research Institute, London, is thanked for permission to publish this paper. A SERC CASE award (to PH) is gratefully acknowledged.

REFERENCES

- Blunden, S J, Cusack, P A and Hill, R The Industrial Uses of Tin Chemicals, Royal Society of Chemistry, London, 1985
- Smith, P J Toxicological Data on Organotin Commpounds, Int. Tin. Res. Inst. Pub. No. 538, 1978
- Blunden, S J and Chapman, A H In: Organometallic Compounds in the Environment, Craig, P J (ed), Longman Group, London, 1986, and references therein
- Donaldson, J D, Grimes, S M, Holding, A F LeC and Hornby, M Polyhedron, 1985, 4: 1293
- Schmitz-Dumont, O and Meyer, H Z. Anorg. Allg. Chem., 1941, 248: 289
- Kupchick, E J and Larigan, T J. Org. Chem., 1962, 27: 3661; Amberger, E and Kula, M R Chem. Ber., 1963, 96: 2562; Gielen, M, de Clercqum, M and De Poorter, B J. Organomet. Chem., 1972, 34: 305
- Krause, C A and Bullard, R H J. Am. Chem. Soc., 1928, 51: 3605
- Considine, W J, Ventura, J J, Kushlefsky, B E and Ross, A J. Organomet. Chem., 1964, 1: 299
- For example Bancroft, G M, Davies, B W, Payne, N C and Sham, T K J. Chem. Soc., Dalton Trans., 1975, 973
- Kumar-Das, V G, Weng, N S, Smith, P J and Hill, R J. Chem. Soc., Dalton Trans., 1981, 552; for disproportionation of Me₂PhSnOH see also: Bos, K D Ph.D. Thesis, University of Utrecht, 1976, p 86
- Kawakami, K and Okawara, R J. Organomet. Chem., 1966, 6: 249
- Blunden, S J and Hill, R Appl. Organomet. Chem., 1990, 14: 69
- 13. Blunden, S J and Hill, R Appl. Organomet. Chem., 1988, 2: 251
- Blunden, S J and Smith, P J J. Organomet. Chem., 1982, 226: 157
- Walterson, G W and Wardell, J L (unpublished observation)
- Denmark, S E, Wilton, T and Willson, R M J. Am. Chem. Soc., 1988, 110: 984; see also Harston, P, Wardell, J L, Martons, D, Tagliavini, G and Smith, P J Inorg. Chim. Acta., 1989, 162: 245
- Chapman, A H and Samuel, A Appl. Organomet. Chem., 1988, 2: 73